
NASA-CR-202415

r

/// - •

DEVELOPMENT AND IMPLEMENTATION OF SOFTWARE FOR VISUALIZING

AND EDITING MULTIDIMENSIONAL FLIGHT SIMULATION INPUT DATA

A Thesis

presented to

the Faculty of the College of Engineering

California Polytechnic State University

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Todd Michael Whelan

September 1996

© 1996

Todd Michael Whelan

ALL RIGHTSRESERVED

ii

APPROVAL PAGE

TITLE: DEVELOPMENT AND IMPLEMENTATION OF SOFTWARE FOR VISUALIZING AND

EDITING MULTIDIMENSIONAL FLIGHT SIMULATION INPUT DATA

AUTHOR: Todd Michael Whelan

DATE SUBMITTED: September 23, 1996

Dr. Daniel J. Biezad

Adviser

Dr. Jin Tso

Committee Member

Dr. Estelie Basor

Committee Member

Signature

Signature

Signature

iii

Abstract

In a real-time or batch modesimulation that is designed to model

aircraft dynamics over a wide range of flight conditions, a table look-

up schemeis implemented to determine the forces and momentson the

vehicle based upon the values of parameters such as angle of attack,

altitude, Machnumber, and control surface deflections. Simulation

Aerodynamic Variable Interface (SAVI) is a graphical user interface to

the flight simulation input data, designed to operate on workstations

that support X Windows. The purpose of the application is to provide

two and three dimensional visualization of the data, to allow an

intuitive sense of the data set. SAVI also allows the user to

manipulate the data, either to conduct an interactive study of the

influence of changes on the vehicle dynamics, or to make revisions to

the data set based on new information such as flight test. This paper

discusses the reasons for developing the application, provides an

overview of its capabilities, and outlines the software architecture and

operating environment.

iv

Acknowledgments

I owe manythanks to those that provided insightful suggestions,

answered numerousquestions, and attended countless progress briefings

as the product evolved. In particular Lawrence Schilling, who

instigating the project; my advisor Dr. Daniel J. Biezad; Ken Norlin,

Jeanette Le-Antoniewicz, and Marlin Pickett, who each had a turn

receiving the majority of my questions; and the rest of the

XFE/Simulation branch at NASA Dryden for their support. I also owe a

special thanks to Nicholas Kantartzis, who allowed me to get my foot in

the door at NASA Dryden in another program. That opportunity has led to

the fantastic experiences I have had in a total of six summer quarters

and five winter breaks at the Flight Research Center.

This work was funded by NASA grant NAG 2-833, in response to the

proposal titled "Intuitive Generic Displays for Real Time Selection of

Aerodynamic Coefficients During Flight Simulation." The Principal

investigator was Dr. Daniel J. Biezad, professor of Aeronautical

Engineering a_ California Polytechnic State University at San Luis

Obispo.

SAVI is available upon request from the National Aeronautics and

Space Administration. For more information, contact:

Dr. Daniel $. Biezad (805) 756-5126 dbiezad@oboe.calpoly.edu

Todd Whelan twhelan@daniel.aero.calpoly.edu

Table of Contents

Page

List of Figures .. vii

Introduction Error! Bookmarknot defined.

Background ... 1

Educational Application of SAVI 3

Figure 2 ... 5

ACSIM Handling Qualities Evaluation Landing Task 5

Methodology .. 7

Implementation .. i0

Results ... 14

The SAVI Desktop .. 16

Selecting Pein<s .. 17

Editing Algorithms .. 18

Developing Edi<ing Algorithms 18

Editing A!_orithms for the Two-Dimensional Plot 19

Editing Algorithms for the Three-Dimensional Plot 23

Unevenly Spaced Data .. 25

Pos:Script Output ... 26

User's Manual ... 27

Conclusions ... 28

wE

Introduction

Background

The Simulation Aerodynamic Variable Interface, or SAVI (pronounced

"savvy"), is a software application that has been designed to

graphically visualize and manipulate multidimensional sets of data. It

has been developed for the flight simulation department at the National

Aeronautics and Space Administration (NASA) Dryden Flight Research

Center. Dryden is located at Edwards Air Force Base, California, home

of the Air Force Flight Test Center. SAVI allows the engineers to

visualize and manipulate the multidimensional data sets that form the

input for the flight simulators and model the aircraft dynamics.

The NASA simulators at Dryden are fixed-base, i.e. without a motion

system to move the cockpit and mimic the simulated aircraft's attitude.

The simulators have forward-looking visuals that consist of a television

projection system for out-the-window graphics and a heads-up display

(HUD) overlay. These are engineering simulators, used for the

development and testing of research aircraft. The research test pilots

occasionally rehearse maneuvers before a test flight, or evaluate the

handling qualities of proposed flight control system or airframe

modifications. They are high fideli=y, six-degree-of-freedom

simulators, capable of accurately modeling nonlinear responses over a

large envelope of operating conditions.

The ability to model these dynamic responses so well is the result

of a table-look-up scheme used to provide the inputs to the equations of

motion. For example, to determine the forces and moments on the

aircraft due to aerodynamic loads, the contributions of different

components will be added together. Consider the change in _he lift

force coefficient that is produced by a particular control surface

deflection. This effect may have been measured in a wind tunnel as a

function of angle of attack, Mach number and surface deflection angle.

This information would be stored in computer memory as a three-

dimensional array, and using the current values of these three

independent variables the simulator can interpolate between the provided

data points to calculate the force contribution. While this technique

can allow the simulator to model complex nonlinear dynamics, it requires

large amounts of input data. In addition, whenthe tables of values are

a function of more than two independent variables, the input files

becomemore and more difficult to interpret in text form.

Until now, the input data that determines the forces and momentsin

the flight simulators at the Dryden Flight Research Facility were

accessible only as text files. If the data was to be modified or

umdated in any way, a particular value had to be found in a large,

multidimensional table and changed by hand. This was a time consuming

process, and _rone to errors. In addition, it was impossible to

visualize the data set, which could provide insight into the nature of

an air vehicle's dynamics, it was also difficult to confirm that the

data was an accurate representation of information originally provided

no the simulation engineer as graphs or charts.

in response to these challenges, NASArequested a solution that

would enable interactive studies to be conducted with the simulators.

_[ASAenvisioned the simulation engineer being able to halt the simulator

temporarily, rapicly modify a region of the data set, and immediately

allow a pilot to evaluate the effects. In this way, an intuitive sense

of the critical parameters effecting aircraft performance could be

cultivated, and theoretical studies could be undertaken.

Occasionally, however, the simulated behavior of an aircraft needs

to be modified in a different way than striving for a qualitative,

theoretical optimum. For example, a prototype aircraft mayexhibit a

phenomenonin flight test that was not predicted by the simulation. It

becomesnecessary to determine what part of the data set is not

providing an accurate model, and an i<erative process is applied in

order to produce simulation time histories that will overlay those

observed in flight test. This process will also benefit greatly from

the interactive, graphical interface to the input data that SAVI

provides.

AiEhough SAVI has been designed for immediate use in flight

simulation, the tool can be applied to any task that would benefit from

the capability to visualize and edit a multidimensional data set.

SAVI's power is in its ability to portray and manipulate data in which

the dependent variables are a function of one or manyparameters.

Educational Application of SAVI

In addition to its utilization at NASA Dryden, SAVI is being

implemented as a member of the Pangloss software suite. The Pangloss

project is an ongoing collaborative effort being undertaken by

undergraduate and graduate students at Cal Poly. The majority of the

students involved are from within the Aeronautical Engineering

department, but the group encompasses other academic disciplines as

well. The main effort of the Pangloss project is to automate the

preliminary design process of aircraft as much as possible, by

developing new software tools and creating interfaces between existing

ones. Primary efforts include implementing multidisciplinary design

principles, and avoiding "black box" tools that detract from the

software's educational value. The components of Pangloss that are

related to SAVI include ACSYNT, PREDAVOR, and ACSIM.

ACSYNT, which is an acronym for Aircraft Synthesis, is an aircraft

design and optimization application. It includes a geometry package

that .:an be used to quickly generate complex aircraft shapes from basic

components. This geometry is used within ACSYNT, in conjunction with

aerodynamic, performance, economic and other input parameters, to

analyze the aircraft design. The geometry information can also,

however, be used by other programs.

PREDAVORis an example of such a program, which uses the ACSYNT

geometry output as input to a vortex lattice analysis. PREDAVOR

calculates the forces and momentson the geometry at different

airspeeds, angles of attack and sideslip, and control deflections,

generating tables of stability and control derivatives. These tables

can then be fed into the flight simulation program that was developed

for the Pang!oss project, ACSIM.

ACSIMis a six-degree-of-freedom real-time flight simulation

program. It was originally designed to work with a single set of

stability and control data in a linearized model about an equilibrium

flight condition. ACSIMis being expanded, however, to implement a

table-look-up schemesimilar to the one used at Dryden, and therefore

will be able to model an aircraft's dynamics over a wider operating

envelope. The primary strength of ACSIMis the inclusion of two handling

quai=uy evaluation tasks. The first task, shownin Figure i, is an up-

and-awaytracking task in which the simulator pilot attempts to point

the nose of the aircraft at a target moving through space. The target

is in the shape of a cross, with lights that alternate randomly at the

ends of the arms. The second task, shownin Figure 2, is a landing

approach in which the simulator pilot flies to a runway and is graded on

deviating from the ex<ended centerline of the runway, and flying above

or below <he desired giidepath angle.

Figure i

ACSIMHandiing Qualities Evaluation Up-and-AwayTask

Figure 2

ACSIMHandling Qualities E-:aiuation Landing Task

Using SAVI, the student will be able to visualize the stability

and control data set coming from PREDAVOR,gaining insight into its

trends and how the aircraft dynamics parameters relate to each other.

The student may also makemodifications to portions of the flight

envelope, and then evaluate the effects of the changes by flying the

handling qualities evaluation tasks in ACSIM.

Methodology

Developmentof the project began by researching the needs and

desires of the engineers that would be the end users, inventing

techniques that would be useful for looking at the data, and creating

methods for changing the values. Emphasiswasplaced upon producing an

interface that is intuitive and consistent with other computer

applications, and consideration was given to portability of the source

code to various computer platforms. The program must also be conducive

to future additions and further improvements by another programmer.

It was realized from the beginning that the program would have to

be very flexible. It must be compatible with any of the flight

simulations at Dryden, and be able to accept any numberof dependent

variables within the data set. Each variable maybe a function of any

numberof independent parameters, which would produce a large and

drastically varying numberof data points for each variable. However,

sizing every array to accomodate the largest numberof data points

expected in a variable would require far too muchcomputer memory.

7herefore, dynamic memoryallocation becamea requirement for the SAVI

data architecture.

Research of data managementtechniques led to the implementation of

=he _'linked list" concept, a commontechnique for dynamically storing

and manipulating sets of information of different sizes (Tenenbaum). A

linked list makesextensive use of the "pointer", a variable type used

in the C programminglanguage that stores the memorylocation of another

variable. These are represented in Figure 3 by the boxes that have

arrows emanating from them, "pointing" to other variables. Another

entity used to build the linked list is a "structure", which is an

encassulation of several variables. The variables within the structure

maybe of differen[types, such as floating point values, integers,

sharacter strings, or pointers. By including a pointer within a

structure that can point to another structure of its own type, the

structures can be linked together into a chain that can have links added

or taken away.

n0e0en0enti loepen0entlVariables Variables

, I Dependencies I

Figure 3

SAVI Data Architecture in Memory

The next issue to consider was the implications of the windowing

environment in developing the SAVI application. X-Windows appears to be

the standard windowing environment for workstation computers. This is

the case for the Sun and Silicon Graphics systems currently in place at

Dryden, and it appears that any future alternative platform will be the

same in this regard.

Within the X-Windows environment, there are different sets of

"toolkits", or libraries of programming objects. These toolkits create

the elements of the graphical interface, such as windows, buttons,

menus, and text fields, as well as complex combinations like file

brcwsers. The programming objects "know" how to handle their own basic

behaviors automatically, such as popping up a menu when a particular

button is clicked, or redrawing itself when it is covered by another

window and then uncovered again. By adopting a standard for the toolkit

and style to be used in graphical interface programs, it helps the

different applications emulate the same "look and feel". In this way, a

computer user that is familiar with one application can very easily

start using another, because basic things look and act the same. The

true test of a graphical interface design is how easily a new user can

begin using it, without having to refer to a manual or to help

documentation.

At the beginning of this project, OpenLook and Motif had emerged

as the dominant toolkits for X-Windows programs with graphical

in<effaces. OpenLook had been gaining in popularity, but Motif was

still more widely used. Motif was also being used for other

applications being developed at Dryden. The decision was therefore made

to proceed with the Motif library, and almost all of the new software

being developed for workstations today is based on the same decision.

Some consideration was given to choose the programming language for

developing SAVI. The most appropriate options include FORTRAN, C++, and

C. Although FORTRAN is used extensively in the simulations at Dryden,

it was not considered a viable option, since the X-Windows and Motif

routines and include files are written in C. All of the programming

examples in the reference manuals are written in C, as well. Another

o_<ion would be to use the C+ ÷ programming language, which is a superset

of C and would support calls to the X-Windows and Motif subroutines.

C_+ has been gaining in popularity and acceptance over C; however, C

code is still much more common and widely known at Dryden, and the C

compilers are more readily available. These facts lead to the decision

to develop the application in C.

I0

Implementation

Whenpossible, the graphical interface portions of SAVI were built

with the Motif toolkit, which is a standardized set of X Windows

routines that create objects called '_widgets", such as pulldown menus,

scroll bars, buttons, and more complex combinations like file browsers.

These routines encapsulate manyoperations in X Windows, create

programmingobjects that handle manyoperations automatically, and

provide a consistent look and feel between different graphical

applications. The control window for SAVI, shownin Figure 4, is an

exampleof a collection of Motif widgets. A software application called

X-Designer was utilized to build the initial skeleton code for SAVI. X-

Designer is an interface builder, and will generate the source code to

construct the menus, buttons, and other widgets, leaving "stubs" for a

programmerto add customized text, color, and functionality to the

interface. In manycases the code that was generated by X-Designer was

used as examples to learn from and expand upon. Another source of

exampleswas the set of programmingand reference manuals published by

O'Reilly & Associates. These books also provided the information

necessary to learn and implement the custom features not part of the

Motif toolkit.

ii

Figure 4

SAVI Control Window

The actual plotting and graphing of the curves needed to be drawn

line by line with calls to basic X Windows graphics routines. The code

to handle the mouse events generated by clicks and drags within the plot

windows also had to be written by hand. Routines were written to plot

the curves and label the axes for the two dimensional graphs and the

three-dimensional plot, shown in Eigure 5. A transformation matrix is

maintained for the three-dimensional view, allowing the user to rotate

<he plot with <he scrollbars beside and below the plot. The effect is

an animated mo_ion of the surface, which helps the user visualize the

_hree-dimenslonal shape. As an additional aid to comprehending the

shape of the data, routines have been implemented to convert the

wireframe into a collection of polygon "tiles". By sorting the tiles

from back to front according to current plot rotation and drawing them

in order, nearer tiles are drawn over parts of previously drawn distant

ones to effectively portray a solid-looking surface.

12

Figure 5

SAVI Desktop

Developmentof the user interface portions of SAVIbegan with X-

Designer, a graphical user interface builder. X-Designer was used to

construct the skeleton of the code that defines the basic layout of the

pulldown menusin the control window, and the layout of the plot

windows. X-Designer will generate the C code to create buttons,

windows, slider bars, menus, and other graphical interface objects. The

program_er then writes the software routines that give the widgets

customized functionality. After somepreliminary work in generating

basic windows and widgets and studyin_ the resul:in_ code, a point was

reached where custom layouts had to be written by hand.

12

DECAN

i

View:

Figure 5

SAVI Desktop

Development of the user interface portions of SAVI began with X-

Designer, a graphical user interface builder. X-Designer was used to

construct the skeleton of the code that defines the basic layout of the

pulldown menus in the control window, and the layout of the plot

windows. X-Designer will generate the C code to create buttons,

windows, slider bars, menus, and other graphical interface objects. The

programmer then writes the software routines that give the widgets

customized functiona!i:y. After some preliminary work in generating

_asic windows and wid@ets and studying the resulting code, a point was

reached where custom layouts had to be written by hand.

13

Platform-specific routines were avoided in creating SAVI, and the C

code was written to the lowest commondenominator of compilers.

Originally, the code was written to the ANSI standard in the expectation

that virtually any compiler would support it. This was not the case, as

was discovered whenusing the older Sun C compiler. The code was then

reverted to the style originally suggested by Kernighan and Ritchie.

The particular architecture used by SAVI to store the data in

memoryis shownin Figure 3. To illustrate how the information is

arranged, begin with the box marked '_DependentVariables". This box

represents a pointer to the first memberin the linked list of dependent

variables. Starting with this pointer and the nameof a dependent

variable of interest, the list can be descended, checking the name

stored in each structure. Whena match is found, a memberof that

structure will point to a list of the independent parameters of which

the variable is a function. This list is a linked list of pointers,

each of which leads to a structure that contains all the information

associated with the applicable independent variable.

For example, suppose information is needed about the dependent

variable called CmAlpha. The dependent variable linked list is

descendec until the structure containing the name"CmAlpha"is

encountered. Following the pointer to its list of independent

variables, and following each of the pointers in this list in turn,

structures for "Alpha", _Beta", _'Mach", and _'Altitude" would be found.

The arrays of data for each of these independent variables would

indicate the position on the horizontal axis above which to plot the

CmAiphavalues.

The source code has been compiled and executed successfully on

both Sun and Silicon Graphics platforms, using three different C

compilers. Theoretically, the application could also be used on a

_ersonal o0mputer that is running the LINUX operating system, with X

Windows and the Motif environment.

14

Results

The windows of the SAVI desktop are shownin Figure 5. The

individual windows are shownin Figures 4, 6 and 7. Whenthe

application is launched, the windows appear on the terminal screen with

blank plots. Data can be accessed for display and editing in two ways,

either from a data file or by interfacing with simulation memory. A

data file is openedby selecting the "Open" button in the "File"

pulldown menu, which creates a file browser for selecting the file. The

input file is interpreted, and a list of the dependent variables appears

in the scrolled list shownin Figure 4. The simulation memoryinterface

is set up by selected "Simulation Interface" from the "File" pulldown

menu, and the list of dependent variables again appears in the scrolled

list shownin Figure 4. Whena variable is selected from the list,

other menusappear in the control window, which allow the independent

parameters to be chosen to plot against. In the case of variables that

are a function of more than two parameters, additional menusallow the

user to fix the values of the other parameters, selecting the

appropriate data surface to view.

15

Figure 6

SAVI Two-Dimensional Plot Window

A

DECAN '_

Figure 7

Savi Three-Dimensional Plot Window

16

If the dependent variable is a function of only one parameter, the

appropriate curve is drawn in the primary two-dimensional plot window,

as shown in Figure 6. For variables that are a function of two or more

parameters, another curve is shown in the secondary two-dimensional plot

window, as shownin Figure 5. This curve is orthogonal to the first,

and they are each highlighted in different colors along the appropriate

lines in the three-dimensional plot window, as shownin Figure 7. The

curves to be shownin the two-dimensional plots can be chosen with the

menusof dependencyvalues in the control window, or the user can click

on the three-dimensional surface and the nearest intersection is used to

generate appropriate curves.

The SAVI Desktop

The control window displays a list of the dependent variables that

were found in the data file, or that were found in simulation shared

memory. The control window also contains the menus that control file

input and output, modify the plot appearance, select the current editing

function, and launch the interactive on-line help.

The primary two-dimensional plot is color-coded, with the data

points designated as red '+' symbols and the selected ones as blue

diamonds. The user can zoom in to look at a region of the curve close

up, and it is in this window that the user may apply the two-dimensional

editing algorithms.

For variables that are a function of more than one parameter, a

secondary two-dimensional plot is generated. It also is color-coded

with the points marked with green '+' symbols, and the selected points

marked with blue diamonds. If points are selected in both two-

dimensional plots, it is analogous to selecting rows and columns of the

ma:rix of points that make up the three-dimensional plot. These

selected rows and columns define the rectangular region in the matrix

Ehat will be the target of the three-dimensional editing algorithms.

18

and column is selected become highlighted, and subsequent editing

commands are applied to those points.

Editing Algorithms

Developing Editing Algorithms

In developing the different algorithms for editing values within

the data set, two design philosophies were applied. The first was to

strike a balance between the power and the complexity of the editing

operation, to give the user as many options as possible without losing

the intuitive sense of the application. It is undesirable to have data

affected in ways that were not intended, even worse to change it in ways

that the user in unaware of. Therefore, all of the editing routines

operate on data that can be seen at one time in a single curve or on a

single data surface.

The second philosophy in designing the editing algorithms was to

create simple techniques that could be combined like building blocks to

construct complex results. This is demonstrated by the surface shown in

Figure 8, which was created with three simple operations.

19

Figure 8

Complex Surface Generated from Simple Editing Operations

Editina Algorithms for the Two-Dimensional Plot

For the purpose of displaying the results of the editing

operations, consider a set of points at a value of 1.0 as shown in

Figure 9. Holding the <shift> key down on the keyboard and depressing

the left mouse button while the pointer is in the primary two-

dimensional plot window will move any of the selected points onto the

imaginary horizontal line that passes through the pointer, as shown in

Figure !0. In this way, one or more values can be "dragged" to a

desired value. While the drag operation is taking place, a digital

readout above the two-dimensional plot will indicate the current value

that the mouse is pointing to. This particular feature will work

outside the drag operation, also; if no points are selected and the

<shift><ieft mouse> combination is used over a data point, its value can

be more accurately read from the graph.

2O

Figure 9

Two-Dimensional Data Before the Editing Operations

Fi@ure 10

Two-Dimensional Data After a Drag, Input Value, Constant Delta,

or Constant Multiple Editing Operation

if the value of a selected psin< ,or points needs to be set more

accura[ely than by :he ,:!ick-and-dras method, the value can be input

2O

Figure 9

Two-Dimensional Data Before the Editing Operations

Figure i0

Two-Dimensional Da:a After a Drag, input Value, Constant Delta,
or Cons:ant Multiple Editing Operation

If the value of a selected point or points needs to be set more

accurately <ban by the :iick-and-dra_ methc@,the value can be input

21

directly from the keyboard. This operation is another way to produce

the results shownin Figure I0.

A set of selected points can be increased or decreased by a fixed

amount by providing a positive or negative additive delta that is added

to each point in turn. This operation is a third way to produce the

results shownin Figure i0. The sameeffect can be achieved a fourth

way with the application of a constant multiplier, in which all of the

points are multiplied by a coefficient input from the keyboard.

After these initial editing capabilities where added, it was

realized that more sophisticated algorithms needed to be developed.

Consider that for each particular flight state of the aircraft, or each

combination of values of the independent variables, the simulator table-

look-up schemewill determine a value by interpolating between the

points in the i_mediate vicinity, if the data is changed in a small

region to match a flight characteristic, or if the change is not blended

smoothly into the surrounding region, the simulated dynamics will work

well at the modified flight state but changequickly back to the old

behavior within a single interval of data. Therefore, someediting

algorithms were developed that would apply the full delta or multiple at

a point, and then blend smoothly to the old values over the selected

interval. Onemethod tapers the changes with a linear profile, and the

ether uses a sinusoid curve.

The first class of blended editing methods is termed the _variable

delta". As shownin Figure ii, the center of the region is changed by

the full value, with the delta decreasing linearly to zero and leaving

_he endpoints unaffected. The second type of delta is demonstrated in

Figure 12, in which the function added to the region is one period of a

sinusoid. The sinusoid is scaled such that the minima of zero occur at

the endpoints, and the maximumoccurs at the center of the region.

22

Figure Ii

Two-Dimensional Linear Delta Editing Operation

Figure 12

Two-Dimensional Sinusoid Delta Editing Operation

The v{riable multiplier is very slmilar us the variable delta, with

the cen_er 3f the region receivinq <he full affect but the endpoints

remain where they were. In this case the editing function is multiplied

23

by the original curve, with endpoints at a value of one and the center

at the full multiplier. The linear multiplier produces the sameeffect

as shownin Figure II, and the sinusoid multiplier produces the same

effect as shown in Figure 12.

Editing Algorithms for the Three-Dimensional Plot

Once points have been selected in both two-dimensional plots to

define a region on the three-dimensional surface, the three-dimensional

editing algorithms can be applied to these points.

There is no direct correlation to the click-and-drag operation, but

the user can input a value for the points directly, apply a constant

delta, or a constant multiple in the same manner as the two-dimensional

plots.

The variable delta and variable multiple work slightly differently

<ban the two-dimensional case, however. As shown in Figure 13, applying

the three dimensional linear delta to a region adds a pyramid shaped

function, increasing the point in the center by the full amount of the

delta and tapering down linearly to the old values at the edge. The

effect of the sinusoid delta is shown in Figure 14, in which the added

function is a sinusoid in both directions.

24

Figure 13

Three-Dimensional Linear Delta Editing Operation

Z

i_!_,i_<'_

Figure 14

Three-Dimensional Sinusoid Delta Editing Operation

25

The linear and sinusoid delta can be combined, as shown in Figure

15, in which the blend is linear in one direction and sinusoidal in the

other.

Figure 15

Three-Dimensional Combination of Linear

and Sinusoid Editing Operations

Unevenly Spaced Data

During development, when dealing with unevenly spaced or sparsely

spaced data, it was often noted that none of the points were receiving

the full effect of the variable delta or variable multiple edit

operations. This was at first misinterpreted as a problem with the

code, but when it was realized that a point simply did not correspond

with the location of the peak, it was assumed that the end user may feel

similar confusion. The "center" of the region in the variable delta and

variable multiDie editing algorithms is now determined by counting the

number of selected points, rather that averaging the horizontal values

27

User's Manual

Finally, on-line interactive help has been installed for the user,

in the form of HTML with hypertext. It is in the same format at World

Wide Web (WWW) pages, and is accessed from within the application by

launching a web browser to view the help file.

28

Conclusions

SAVI is a powerful, intuitive graphical user interface to

multidimensional data sets, such as flight simulation input data. It

presents the user with a look and feel consistent with other

applications, and is written with C code that is portable to various

computer platforms. SAVI will be a useful and productive tool for the

simulation engineers at Dryden, as well as membersof other groups at

NASAsuch as aerodynamics, propulsion, and flight controls engineers,

who often provide the data models for the aircraft simulations. For the

first time, the data can be viewed as a function of any one or two of

its dependencies, and the values can be quickly modified in an intuitive

way.

SAVI will also have educational value at the university level, and

is in the process of being implemented as a tool in the undergraduate

Aeronautical Engineering curriculum. It will enable students to

visualize the nature of an aircraft simulation data set, and begin to

develop an intuitive sense of aircraft dynamics. In addition, SAVI will

be used as a tool for working with data generated by students in their

own preliminary design of aircraft. It has the potential to be used in

assessing the effects of design changes on performance, stability and

control, and handling qualities, or for updating a data set with the

results of different prediction techniques.

